Practical Approaches to Photolithography Run-to-Run Control in Leading Edge High-Mix Semiconductor Manufacturing

Yulei Sun, Ph.D. Rudolph Technologies, Inc.

Rudolph Software Solutions

Outline

- Lithography R2R overview
 - High-mix challenges and solutions
- CD control
 - CD control with adaptive slope
- Overlay control
 - High order overlay control
 - Dynamic CPE Control
- Conclusion

Photolithography in Semiconductor Manufacturing

- Semiconductor manufacturing is the most sophisticated and unforgiving volume production technology
 - Consists of complex series of unit process steps
- Photolithography is the most critical step
 - Transfers designed patterns onto silicon wafers
 - Determines minimum feature size and ultimately performance of ICs

Run-to-Run Control of Photolithography

- Lithography benefits most from R2R
 - Achieve proper CD and overlay increased process capability
 - Reduce scrapped wafers increased yield
 - Reduce rework and send-ahead wafers reduced cycle time
- Litho R2R becomes increasingly important and a must-have in leading edge technology nodes and high-mix manufacturing environment
 - Decreasing feature size and introduction of multiple patterning technologies

Run to Run (APC) Result	Benefi sta	Benefit \$M/year for 20k wafer start / month logic fab			
	Photo/ Etch	CVD/ RTA	СМР	Diffu- sion	
Increased Process Capability	\$360	\$24		\$24	
Increased Process Accuracy					
Reduced Rework	\$5				
Reduced Process Time	\$11				
Reduced Downtime		\$0	\$1		
Reduced Cost of Consumables		\$1.5	\$5		
Engineering head count reduction	\$0				
Reduced Operator Intervention			\$1	\$1	
Reduced # of Wafers Scrapped	\$2	\$2	\$7	\$2	
Reduced Send-ahead Wafers	\$5		\$11		

Litho R2R Strategies

- CD and overlay control
 - CD measures size of a particular feature, e.g., line, space, etc.
 - Overlay measures alignment of current pattern with respect to pattern from previous layer
 - Both are essential for high yield and finished IC performance

Partitions (Threads)

- Unique combinations of manufacturing context attributes, e.g., machine, product, layer, etc.
- Each partition has individual control loop using data only from itself.
- Proper definition of partitions separates disturbances into different groups (partitions) so that variability within each partition should be much smaller than the overall variability.
 - Over-definition of partitions may undermine controller performance and lead to large number of partitions and data poverty.

Over-Partitioning Example

*Results are worse when reticle is in partition for modeled CD offset

High-Mix Challenges and Solutions

- Hard to keep low-running products updated if they require their own partition
 - Track time and number of wafers/runs since partition was last tuned
 - Control-oriented dispatching to help ensure partition state will be updated (e.g., Anderson and Hanish, IEEE Trans. Semicond. Manuf., 2008)
 - Require lookahead if last tuning was long ago (e.g., Krumanocker and Yelverton, APC Conference, 2015)
 - Similar partitions (e.g., reticles) can be combined into a partition group that share data with each other
 - Controller flexible enough to allow partition criteria change
 - Hierarchical partition definitions (e.g., Yelverton and Agrawal, SPIE, 2014)

= 80,000 Interactions

Hierarchical Partitions and Dynamic State Estimation MP_AlignmentOffset_Prim1 Layer, MetToTool, Product, Ref

- Controller can start with the most specific partition and switch dynamically to partitions with relaxed criteria if not enough data is found
- Multiple hierarchical levels of partitions can be defined and take predetermined precedence during run-time

MP_AlignmentOffset_Prim1	Layer, MetToTool, Product, RefTool, Reticle
MP_AlignmentOffset_Prim2	Layer, Product, RefTool, Reticle
MP_AlignmentOffset_CR1	Layer, Product, Reticle
MP_AlignmentOffset_CR2	Layer, Product
MP_AlignmentOffset_CR3	Customer, Layer, Process

if(timeSinceLastTune(MP_AlignmentOffset_Prim1)<(3600*24*180)) then (MP_AlignmentOffset_Prim1) else(

if(timeSinceLastTune(MP_AlignmentOffset_Prim2)<(3600*24*180)) then (MP_AlignmentOffset_Prim2) else(

if(timeSinceLastTune(MP_AlignmentOffset_CR1)<(3600*24*180)) then (MP_AlignmentOffset_CR1) else(

if(timeSinceLastTune(MP_AlignmentOffset_CR2)<(3600*24*180)) then (MP_AlignmentOffset_CR2) else(

if(timeSinceLastTune(MP_AlignmentOffset_CR3)<(3600*24*180)) then (MP_AlignmentOffset_CR3) else(

C_AlignmentSettingsTable)))))

Smart Sampling

- R2R can provide additional information as guidelines for smart sampling
 - Tells sampling system to measure first few lots of a newly initialized partition to build up state estimate
 - Requests sampling on a particular partition if it hasn't been measured for certain period of time or certain number of lots
 - Calculates real-time metrics (e.g., Cpk) to evaluate process health by partition and determine sampling rate based on it (Jones & Sun, APC Conference, 2016)

CD Control

EWMA Filter

- Tuning algorithm adjusts state variable to reflect current processing conditions
- EWMA filter captures real trend from noisy process data
 - Exponentially Weighted Moving Average

 $\hat{y}_{k+1} = (1 - \lambda)\hat{y}_k + \lambda y_{k+1}$

- Higher weight given to most recent data
- Weight decreases exponentially
- Optimal λ value can be determined by simulation

More Realistic Example

CD Control with Adaptive Slope

MEAN_CD (TOOL03)

- Slope optimized using machine learning algorithms once enough new datasets are collected
 - e.g., Automatically recalculate slope every 100 runs and apply in dose calculation

Overlay Measurements

• Total overlay error is decomposed into a few main systematic error modes. (Armitage and Kirk, SPIE, 1988)

- EWMA tuner
 - **PredOffset**(n+1) = $(1-\lambda)^*$ **PredOffset**(n) + λ^* **ObservedOffset**(n)

Basic Overlay Control

10 first-order terms

Photolithography R2R Summary

- Scalable enough to handle various number of settings ranging from tens to hundreds
- Flexible enough to allow each control technique (e.g., CD, basic overlay, HOPC, iHOPC, CPE)
 - To be turned on/off independently
 - To have unique partition definition
- Hierarchical partitioning scheme can be set up and switched dynamically

MP_AlignmentOffset_Prim1	Layer, MetToTool, Product, RefTool, Reticle
MP_AlignmentOffset_Prim2	Layer, Product, RefTool, Reticle
MP_AlignmentOffset_CR1	Layer, Product, Reticle
MP_AlignmentOffset_CR2	Layer, Product
MP_AlignmentOffset_CR3	Customer, Layer, Process

- 4 🤮 Settings
 - 🕆 層 🎆 AlignmentSettings (Default)
 - AlignmentSettings_CPE
 AlignmentSettings_CPE (Layer: 130; Product: 5974)
 - AlignmentSettings_HOPC
 AlignmentSettings_HOPC (Layer: 130; Product: 5974)
 - AlignmentSettings_iHOPC
 AlignmentSettings_iHOPC (Layer: 130; Product: 5974)

MP_AlignmentOffset_HOPC	Layer, Product, Reticle
MP_AlignmentOffset_iHOPC	Layer, Product, Reticle
MP AlignmentOffset CPE	Laver, Product, Reticle

if(timeSinceLastTune(MP_AlignmentOffset_Prim1)<(3600*24*180)) then (MP_AlignmentOffset_Prim1) else(

if(timeSinceLastTune(MP_AlignmentOffset_Prim2)<(3600*24*180)) then (MP_AlignmentOffset_Prim2) else(

if(timeSinceLastTune(MP_AlignmentOffset_CR1)<(3600*24*180)) then (MP_AlignmentOffset_CR1) else(

if(timeSinceLastTune(MP_AlignmentOffset_CR2)<(3600*24*180)) then (MP_AlignmentOffset_CR2) else(

if(timeSinceLastTune(MP_AlignmentOffset_CR3)<(3600*24*180)) then (MP_AlignmentOffset_CR3) else(

C_AlignmentSettingsTable)))))

谢谢 | 謝謝 danke ありがとう Thank You! さ사합니다 merci obrigado

info@rudolphtech.com www.rudolphtech.com

